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The Cauchy-Poisson problem for a rotating liquid 

By JOHN W. MILES 
Department of Mathematics, Institute of Advanced Studies, 

Australian National University, Canberra 

(Received 19 November 1963 and in revised form 11 March 1963) 

A semi-infinite body of liquid is in uniform rotation about a vertical axis for 
t < 0. A concentrated, vertical displacement of the free surface is imposed a t  
t = 0. The motion of the free surface for t > 0 is calculated in linear approxima- 
tion with the aid of Hankel and Laplace transformations, together with an inter- 
mediate transformation to parabolic co-ordinates. The result appears as an 
integral superposition of dispersive waves that divides naturally into two parts, 
corresponding to waves of the first and second class, with angular frequencies 
that are respectively greater or less than twice the angular speed of rotation. 
The waves of the first class, which are qualitatively similar to those in the 
classical (Cauchy-Poisson) problem, are found to dominate the asymptotic 
representation, as obtained through a stationary-phase approximation. The 
analysis is carried out in such a way as to separate the effects of Coriolis accelera- 
tion and free-surface curvature. Attention is focused on concave surfaces, such 
as would be realized in a laboratory experiment, but it is pointed out that 
striking differences exist between the dispersion laws for concave and convex 
surfaces, especially as regards waves of the second class. 

1. Introduction 
The study of surface waves in a rotating liquid was initiated by Kelvin (1879)) 

and continued by others (Lamb 1932, $5 207-212), on the basis of shallow-water 
theory and the approximation of the free surface by a plane (planar approxi- 
m.ation). Miles (1959) extended this earlier work by eschewing the shallow-water 
approximation but retained the planar approximation. A significant feature 
of these investigations, in so far as simple harmonic oscillations are assumed to 
exist, is a degeneration of the solutions at, and some degree of non-uniform 
validity in the neighbourhood of, v = 3w (a. denotes angular frequency of oscilla- 
tion and w angular velocity of rotation). It seems likely that this difficulty arises 
from the a priori assumption of a steady state, although the planar approxima- 
tion also introduces an element of uncertainty. It therefore appears desirable 
to consider the effects of rotation in a consistently posed initial-value problem 
ast-tco.  

“on-free-surface problems in a rotating fluid have been surveyed by Squire 
(1956). Sretenskii (1960) and Lauwerier (1961) have considered transient 
surface waves in a rotating liquid on the joint basis of the shallow-water and 
planar approximations.] 
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Motivated by these considerations, we shall consider here the response to an 
initially concentrated displacement of the paraboloidal free surface 

z = zo(r) = r2/2Z, (1.1) 

bounding a semi-infinite, rotating body of liquid. Such a configuration could be 
approximated, as regards observations remote from the actual boundaries, in 
a laboratory tank; equilibrium between the uniform gravitational field and the 
centrifugal force a t  z = zo then would imply 1 = g/w2. More generally, we may 
refer our investigation to the non-uniform gravitational field described by the 
potential @ = 4w2rz + g[z - z,(r)] (1.3) 

and characterized by the dimensionless parameter 

a: = w21/g. 

I n  so far as a > 0, this generalization will be found to entail no essential increase 
in the complexity of the analysis, compared with that required for the afore- 
mentioned laboratory problem (for which a: = l), and will allow us to separate 
the effects of Coriolis acceleration and free-surface curvature. We remark that 
the neglect of the latter effect, as in the planar approximation, is clearly appro- 
priate for a % 1 ; on the other hand, it is definitely inconsistent for axisymmetric 
motion if a = O(1).  

[The Coriolis-acceleration-induced frequency shift of natural oscillations in 
a finite domain is O(w) for asymmetric, and O(w2) for axisymmetric, oscillations 
as w + 0; the free-surface slope enters the kinematic boundary condition linearly 
and induces a frequency shift of O(w2/a). We infer from these considerations that 
the planar approximation is appropriate to the study of asymmetric waves in 
a slowly rotating fluid; such conditions obtain in the oceanographic problems 
that motivated Kelvin and his successors. The fact that free-surface curvature 
may not be neglected in a consistent treatment of axisymmetric oscillations 
appears to have escaped the notice of these earlier investigators and to have been 
first pointed out by Fultz (1962), whose experimental investigations yielded 
frequencies consistently lower than those predicted by the earlier analyses.] 

I n  the absence of rotation and free-surface curvature, the problem posed in 
the penultimate paragraph reduces to the classical Cauchy-Poisson problem 
(Lamb 1932, $255) .  This reduced problem is distinguished by the absence of 
characteristic scales for either length or time, in consequence of which the 
solution for the free-surface displacement in the radial co-ordinate r and the 
time t has the similarity form 

<(r,  t )  = A r 2 f O ( g t 2 / r ) .  (1.4) 

It is possible to obtain this solution by posing the velocity potential as a function 
of the similarity variable ,u = gt2/r and the spherical polar angle 8;  separation 
of variables then yields a power-series representation of fo(w).  It is, however, 
generally more enlightening to pose the solution as an integral superposition of 
surface waves that: (a)  have the form 

Ck(T, t )  = Jo(kr) cos (crt) (1.5) 
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on the free surface z = 0;  ( b )  fall off like exp ( -  k l z I )  with depth; and (c) are 
governed by the simple dispersion law 

v 2  = gk. (1 .6)  

Such a representation may be developed as either a power or an asymptotic 
series in u, of which the leading terms are given by 

f d P )  = +P + W3) (P + 0) (1.7)  

and f&) 2% cos (ip) (P  -+ a), (1 .8)  

provided that we define 2nA as the initially displaced volume. 
We may expect rotation to alter these results, both quantitatively and 

qualitatively, through the more or less distinct effects of Coriolis acceleration 
and free-surface curvature. These effects carry with them the time scale 1/w 
and the length scale 1 (21 is the latus rectum of the paraboloid of ( l . l ) ) ,  in con- 
sequence of which a similarity solution no longer exists. However, the repre- 
sentation of the free-surface displacement in terms of the elementary oscillations 
of (1 .5)  depends only on axial symmetry and linearity, and we therefore may 
construct a solution by an appropriate generalization of the classical procedure. 

Following Lamb (6 323), we may divide oscillations in a rotating liquid into 
‘waves of the first class’ and ‘waves of the second class’ according to whether 
1 ~ 1  > 3w or [ c[ < 2w. Waves of the first class are qualitatively similar to classical 
gravity waves in that they decay exponentially in a fluid of infinite depth and 
are governed by a unique dispersion law (in the sense that there exists a t  most 
one value of v2 for each value of k). 

Waves of the second class owe their existence entirely to rotation and have 
no antecedents in a non-rotating liquid (at  least in the present problem; for 
some configurations they degenerate to steady motions as w --f 0). Strictly 
speaking, they are not surface waves, in that they propagate into the liquid with- 
out decay (other than that associated with radial spreading). An even more 
important distinction, at least from an analytical point of view, is that an infinite 
number of frequencies generally is admissible for a given wave-number. As we 
shall show, the frequency spectrum for a concave free surface is continuous 
over ( - 2 w , 2 u ) ;  that for a convex surface is, in remarkable contrast, discrete 
but infinite, with finite gaps inside & 2w and a limit point a t  v = 0. 

This division of waves into two classes suggests that we generalize (1.1) 
according t o  (1 .9  a, b )  

where 2nA is the initially displaced volume, fi and fi represent waves of the first 
and second class, and 

p = gt2/r, T = wt, 8 = r/l. (1 .10  a, b,  c )  

We remark that f3 is simply the radial slope of the equilibrium free surface. 
A more suitable representative of r for la1 3 1 would be 

uf3 = w2r/g, (1.11) 

which is independent of 1. In  particular, we must let (a1 + 00 with a0 fixed in 
order to reduce our results to those that otherwise might be obtained by an apriori 
invocation of the planar approximation. 
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The details of our analysis, which involves an intermediate excursion into 
parabolic co-ordinates, are rather involved and add little to the physical inter- 
pretation of the results; accordingly, we shall present and discuss the more 
important results a t  this point. The central result, obtained in 5 3, is the Hankel- 
Laplace transform Z ( k ,  ir), which gives the joint distribution of the elementary 
free-surface displacements of (1.5) over the wave-number (k) and frequency (a) 
spectra. Noting the initial behaviour [cf. (1.7)] 

f = +p[i +0(02)1 (p  --+ 0,  e -+ 0 )  (1.12) 

only in passing, we shall separate the r-distribution into waves of the first and 
second class and then apply standard techniques to obtain the approximations 

fl 2 - 8 [ ~ -  12a8--8+0(p0,82,~-~)] 

xcos[gp+2ae+~e+~(p- l ,82p-1)1 (p 9 i , ~ ,  ae) (1.13) 

and f2 = 2 ~ ~ 8 [ ~ - ~ J , ( 2 7 )  + 0 ( 8 ) ]  (8  --+ 0) ( 1 . 1 4 ~ )  

( 1.14 b )  

Comparing (1.13) and (1.14), we find that the waves of the second class are 
dominated by those of the first class for sufficiently large values of p. This 
dominance extends to the effects of rotation-i.e. to the terms of O(8,aO)- 
only for 7 

7 = (Eopp (1.15) 

implies a0 = O(l/p)  if 7 = O ( l ) ,  and the terms of O(8,aB) in (1.13) then are of 
the same order as terms already neglected. We therefore may neglect f2 compared 
with fi in a consistent, asymptotic approximation to the free-surface displace- 
ment. Substituting (1.13) into (1.9), we then obtain 

= 2n-*aO~-%[sin (27 - an) f 0(8*7*)] (7 -+ co). 

1; however, the equality 

where (1.17) 

We conclude that the principal effect of rotation on the Cauchy-Poisson problem 
is the phase shift 6 in the asymptotic wave train; the change in amplitude, al- 
though of the same order of magnitude as the phase shift, has a uniformly small 
effect. All other effects are evanescent as t --+ co. Finally, we remark that in- 
voking the planar approximation by replacing a = 1 (as for the laboratory pro- 
blem) by a = oc) in (1.17) leads to a 20 yo error in the phase-shift 8. 

It might be thought that our investigation also should be applicable to 
geophysical problems, where the curvature of the free surface, approximated 
locally by a paraboloid, is convex and the parameter a is small (la1 + & sin2p 
if - 1  is taken to be the radius of the Earth and j3 the latitude). In  fact, the 
assumption of infinite depth renders our results rather artificial for such applica- 
tions (especially for oceanographic problems, where the shallow-water approxi- 
mation is rather more appropriate), and we therefore shall not attempt to render 
our analysis generally valid for convex free surfaces. Nevertheless, some of 
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the differences between waves in rotating liquids with convex and concave free 
surfaces are rather striking, and we have thought it worth while to sketch (in 
0 6 below) the modifications required to render our analysis valid for a < 0 and 
then to state the essential, qualitative differences in the corresponding results.? 

2. Formulation 
We consider a semi-infinite body of liquid, bounded by 

-ai < z 6 zo(r) (0 < r < co) (2.1) 

in cylindrical polar co-ordinates, to be in uniform rotation with angular velocity 
w about the vertical axis r = 0. We require the disturbed free surface, 

z = Z O ( d  + 5(r,  t), 

subsequent to an initial elevation 

z -zo  = c0(r) = AG(r)/r ( t  = 0) ,  (2.2) 

where 277.4 is the displaced volume associated with c0 and 6(r)  the Dirac delta 
function. 

We shall assume that Q is sufficiently small to justify the linearization of both 
the equations of motion and the free-surface boundary conditions. Invoking 
axial symmetry, we then may determine the perturbation pressure p and the 
velocity {u, v, w} in a rotating (with the angular velocity w )  reference frame1 
from an acceleration potential x(r ,  z ,  t )  [cf. (1.2)] according to 

and 

where p denotes the density of the liquid and subscripts imply partial differen- 
tiation. The free-surface boundary conditions are 

p = 0) w = DqDt (2  = zo + 5 + zo) (2.6 a ,  b)  
or, equivalently, x = 95, w = &+uzh(r) ( z  = zo). (2.7 a, b)  

The initial conditions are 
x = x1 = 0 ( t  = 0, z < zo) (2.8) 

and 5 = Co(r), 6 = 0 (t = 0). (2.9) 

We also must require x and its derivatives to vanish as r and/or - z -+ 00. 

t I am indebted to the referee for suggesting that significant differences might exist 
and also for suggesting that the importance of free-surface curvature, relative to that of 
Coriolis acceleration, might be established by comparing the results obtained (for 01 = 1) 
with and without the planar approximation. 

$ The cylindrical polar angle is not required in this reference frame by virtue of the 
axial symmetry, but there is a tangential component of the perturbation velocity in 
consequence of the Coriolis acceleration. 
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A more complete derivation of, and discussion of the approximations ante- 
cedent to, (2.3)-(2.6) is given in Miles (1959); however, the term uz; in (2.7b) 
was neglected in this earlier paper in consequence of the planar approximation. 

3. Formal solution 

boundary-value problem through the Laplace transformation 
We first transform the initial-value problem of the preceding section to a 

Transforming (2.3)-(2.5) and (2.7)) invoking the initial conditions (2.8) and (2.9)) 
eliminating 2’c between the transforms of (2.7 a, b) ,  writing out V2X, and in- 
voking axial symmetry, we obtain 

X,, + r-lX, + h2X,  = 0 (3.3) 

and (s2/g) X + X ,  - k 2 z ; ( r )  X ,  = sco(r) [z  = zo(r) ] ,  (3.3) 

where A2 = 1 + (2w/s)2. (3.4) 

We have carried our formulation to this point in polar co-ordinates 
because of their inherent simplicity, but to expedite the solution of the boun- 
dary-value problem posed by (3.2) and (3.3) we require a co-ordinate system in 
which (a) the differential equation is separable and (b)  the boundary z = zo(r) 
is a co-ordinate surface; (a )  holds for polar co-ordinates, but ( b )  does not. Ob- 
serving that (3.2) is Laplace’s equation in the co-ordinates r and z/h and that 
z = zo = r2/21 is a paraboloid of revolution, we are naturally led to introduce 
parabolic co-ordinates, say E and y, in an ( r ,  z/h)-space. Normalizing these co- 
ordinates such that 6 = r and y = 1 on x = zo(r), we may pose the required trans- 
formation in the form 

(3.5a,b) r = E7, z - z o ( r )  = +[Z-1~2+h21(1-y2)] (0  < ( <  m, 1 < 7 < m). 

The differential metric is given by 

Transforming (3 .9 )  and (3.3), we obtain 

(W2 E-“(5X,), + T - l ( T q ,  = 0 (3.7) 

and (s”g) x - (h21)-1X, = sco(<) (7 = 1). (3.8) 

1x1 < a3 ( t + O , G O ;  y+GO). (3.91 

We also have the finiteness conditions 

We remark that: < is a length and y is dimensionless; ( and y are orthogonal 
co-ordinates in an (r,  z/h)-space but not in an ( r ,  2)-space; < and y are real only 
for real values of h2; the differential equation (3.7) is elliptic for h2 > 0 and 
hyperbolic for h2 < 0, corresponding to waves of the first and second class. 
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A particular solution of (3.7) that satisfies the finiteness conditions (3.9) 
is given by 

(3.10) 

where Jo is an ordinary Bessel function and KO a modified Bessel function of the 
second kind. We therefore may pose a general solution to (3.7) and (3.9) in the 
form (introducing a factor of g in order to simplify the subsequent expressions 
for the free-surface displacement) 

x = g lom Z ( k ,  s )  Jo(kt) N(hkl7) kdk, (3.11) 

where N ( K ~ )  = R O ( ~ 7 ) / K O ( ~ ) ,  K = hkl. (3.12a,b) 

We may identify Z(lc,s) as the joint, Hankel-Laplace transform of the free- 
surface displacement in the limit 7 + 1 + [see (3.17) below]. Substituting (3.11) 
into (3.8) and introducing the auxiliary function 

# ( K )  = R l ( K ) / R O ( K )  = i H l 1 ) ( i K ) / H h 1 ) ( i K )  (3.13 a, b )  

N 1 + tK-' + o ( K - 2 )  ( K  -+ a), ( 3 . 1 3 ~ )  

lom IIs2 + ( g W )  $ ( W l  Z ( k ,  s )  J O ( W  kdk = sCo(t). (3.14) 

Substituting c0 from (3.2) into (3.14) and then applying the Hankel inversion 
theorem, we obtain 

Z ( k ,  s )  = As[s2 + (gk/h) f$(hkl)]-1. (3.15) 

Substituting (3.15) into (3.11) and taking the inverse Laplace transformation 

we obtain 

of the result, we obtain the formal solution 

(lit) N(Akl7) kdk 
s2 + (gklh) #(hEl). 

X(r, z, t )  = Ag9-l  s 

The free-surface displacement is given by (3.7 a)  as 

5(r, 0 = g-lxk-3 %l(r), t )  
Pm 

Z ( k ,  s)  Jo(kf[)  N(hkZ7) kdk = lim 2 - 1  J 
0 V + l +  

(3.16) 

(3.17a) 

(3.17 b )  

where the symbol Nl implies a passage to the limit 7 = 1 +  after the double 
integral with respect to k and s has been either evaluated explicitly or rendered 
convergent for 7 = 1. We note that 

N ( q )  N e-K(v-1) (I K I --f 00, a { ~ }  > 0, 7 > I ) .  (3.18) 

We may guarantee the restriction B{h) > 0 ,  imposed in (3.10), by choosing 
that branch of h [see (3.4)] which takes the value 1 at s = 00 and drawing a 
branch cut along a { s >  between the branch points at s = 5 2iw. We show in the 
Appendix that the only other singularities of 2, qua function of s, are two poles 
on the imaginary axis outside of the branch cut, say s = fig,  g > 2 0 .  Sub- 

6 Fluid Mech. 17 
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stituting h from (3.4) into (3.15) and equating the denominator of the result to 
zero, we obtain the implicit dispersion equation 

(3.19 a, b )  ~2 = 4 ~ 2 + g k h # ( k l h ) ,  h = [l - (2w/a)2]#. 

We remark that (3.19) has the explicit solution [cf. (l.6)] 

= [(gk)2+ ( 2 ~ 2 ) ~ ] 3  + 2w2 (a = CO) ( 3 . 2 0 ~ )  

= gk+ %02+O(w4/gk) (3 .20 b )  

If, on the other hand, CL = O ( l ) ,  we must include the first two terms in the 
asymptotic approximation (A 13) to obtain 

(a  = 00, w2 -+ 0) .  

g2 = gk + 2w2 + i(g/Z) + O(w4/gk) [a = O( l) ,  w2 + 01. (3.21) 

4. Free-surface displacement 
We shall consider further only the free-surface displacement [. Substituting 

2 from (3.15) into (3.17~) and introducing the dimensionless displacement f 
according to (1.5)) we obtain 

where 

and the path of integration in the s-plane passes to the right of both the poles 
at s = k icr and the branch cut between s = k 2iw. 

It is, in principle, possible to develop f as a power series in t by expanding its 
Laplace transform about s = co. The result is far more cumbersome than in the 
classical problem, however, and the resulting representation does not lend itself 
to a wave interpretation. Accordingly, we note only the first approximation 

f = r 2 2 P 1  JOm Jo(kr) {SKI - gk#(kZ) s-3 

+O[(gk)2$2(kZ)s-5, o ~ ~ g k # ( k Z ) s - ~ ] } N ~ k d k  (s -+ 00). (4.3) 

Introducing the dimensionless variables of (1.6) and the change of variable 
kr = v and then inverting term by term, we obtain 

Introducing the asymptotic expansion (3.13 c), we obtain 

f = +p[l+ 0(62)] (p -+ 0, e -+ 0). (4.5) 

If t is not sufficiently small to render a power-series approximation to f 
efficient, it  becomes expedient to separate the solution into waves of the first 
and second class. Proceeding in the usual manner, we deform the path of 
integration of (4.2) into three closed loops, separately encircling the two poles 
and the branch cut. Referring to the discussion in 5 1 above, we may identify 
the joint contribution of the poles asfl and the contribution of the branch cut 
as f 2 .  
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Considering fl first, we introduce the change of variable kr = u/h and the 
dimensionless variables of (1.6) into (3.19 a, b )  and (4.1) and then apply Cauchy's 
residue theorem to obtain 

= Jom cos {p++/e) + 4q4} ~ ~ { ~ [ i  + 4aeu-1#-l(u/e)la}~,udu, (4.6) 

where az(U) = 4w2 + (g/ze) u$(u/e). (4.7) 

Turning to fz, we introduce the change of variable 

s = 2iw sin w, h = - i cot w (Y{w} < 0) (4.8a, b )  

in (4.2) we obtain 

Jo(kr) &kdk f z  = 2cxr2 7 /02n exp {2i7 sin w} cos2 w dw 

(Y{w> -+ 0 - ). (4.9) 

Transforming the contributions of each of the four w-quadrants to the first 
quadrant, introducing the change of variable kr = v, and setting Y{w} = 0-  
and Nl = 1, we may reduce (4.9) to 

f z  = y./o~" cos (27 sin w) cos2 w dw 

(4.10) 
x IOm v#[ - i(v/e) cot w] + 4ia0 sin w cos w * 

Substituting # from (3.13 b )  into (4.10), taking the imaginary part of the result, 
and simplifying with the aid of the Wronskian of Jo and Yo, we obtain 

Jo(v) vdv 

dw s," Jo(v) H ( i  cot w, cos2 

(4.11) 
where H ( z ,  y) = ( 2 ~ / 7 ~ )  IxHil'(~) + 4ayHA')(~)1-~ (4.12a) 

= O[z(l- 4aylogx)-2] (z + 0) (4.13b) 

= 1 +O(z-Z) (x -+ 00). (4.12 c) 

Further progress appears to be possible only on the basis of approximate 
methods. Having already dealt briefly with power-series approximations, we 
shall devote the following section to asymptotic approximations. 

5. Asymptotic approximation 
We consider first the asymptotic approximation of fi for 

3 1, e, oIe. (5.1) 

Appealing to the fact, established in the Append;x, that K # ( K )  is a monotonically 
increasing function of K ,  we then may show that the integrand of (4.6 b )  can have 
a point of stationary phase only for u = O(p) and that the neighbourhood of 

6-2 
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such a point makes a contribution of O(p) to the integral. We also may show, 
by Fourier-integral techniques, that the contributions of other neighbourhoods 
are at most O(p-l). It follows that we may obtain the dominant terms in fl as 
p + 00 through a stationary-phase approximation based on the asymptotic 
approximation of $(u/O). Substituting ( 3 . 1 3 ~ )  into (4.6 b)  and adopting the 
convention that 0 ( 0 2 )  implies the largest of 0 ( O 2 ,  ae2, a202), we obtain 

f l ( p ,  e;  a)  - IOm c o s { i h ~ u *  + pa + a) eu-: + O ( ~ ~ ~ - Q ) I )  
x J,[u+2aB+O(82u-1)]Nludu (p + 00). (5.2) 

We may now proceed as in the classical problem (Lamb, $255). Replacing 
J, by its asymptotic expansion, replacing the resulting product of cosines by the 
sum of the cosines of the sum and difference of the two phases, and neglecting 
the cosine of the sum as having no point of stationary phase, we obtain 

+~n+o(u-l,e2u-1,p~e22L-~)}Nldu (p+ m). (5.3) 

The point of stationary phase for (5.3) lies at  

us = &p - (401 + 4) e + O(p-1) e2p-1). (5.4) 

Evaluating the contribution of the neighbourhood of u = u, to the integral in 
the usual way and then taking the limit 7 -+ 1 + [X1 -+ 1; cf. (3.18)], we obtain 

f1@, 8; a )  - 2-qp - 12ae - 8 + O(p0,02p-1)] cos [&u + 2ae + $0 + 0(pU-l,82p-1)] 

(p+m). ( 5 . 5 )  

We remark that the approximation to the phase is more accurate than that to 
the amplitude. 

Turning to fz and defining fro) as that approximation to f 2  obtained by replacing 
H by its asymptotic value of 1 in (4.11) and A = fi-fio) as the corresponding 
error, we obtain 

f40’ = ys,”” cos (27 sin w) cos2 w dw IOm J,(w) dw ( 5 . 6 ~ )  

= ~ ~ O T - ’ J , ( ~ T )  (5.6 b )  

and 

where 

4n cos (27 sin w) cos2wF(8 tan w, cos2 w) dw, 
n (5.7) 

P m  

J O  

To estimate A, we start from the known bounds 

and 

(5.8 b )  

(5.9a) 

(5.9 b )  
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by virtue of which (5.8 b )  yields 

(5 .10~)  

and IF(u,y)I < (2u/n)*Jmz4 IH(x,y)-  11 dx = O(u*) (u + a). (5.10b) 

It follows that the integrand in (5.7) vanishes like Ow cos (27w) as w -+ 0 and like 
04 cos (37) (in - w)* as w --f $n and hence that 

0 

A = 0 ( ~ 0 2 )  (e -+ 0) .  (5.11) 

The estimate (5.11) is inadequate for 7 % 1 in consequence of the point of 
stationary phase at w = &7r in (5.7). To estimate A as 7 -+ co, we integrate (5.7) 
by parts, introduce the change of variable w = $ 7 ~  - d p ,  and then use the bound 
(5.10b) and the method of stationary phase to obtain 

4ao 4. d A = - - -  sin (27 sin w) - [cos wF(O tan w, cos2 w)] dw (5.12 a) 
=7 I0 dw 

07-8 som sin ( 27 - p2) [ pF ($ , 0 )  ] dp 4 
N - -a  

7r dpl 

1 = o[ue87-t sin (27 - tp2) +dp 

(5.12b) 

(5 .12~)  

= O(a8*7-P) (7 -+ a). (5.12d) 

Summing up, we have 

e; a)  = 2ae[7-1~,(27) + o(e)l (e + 0 )  (5.13a) 

= 27r-*aO~f[sin (27- $7) +O(O*7&)] (7 -+ co) (5.13 b )  

= o(ae*7-%) (7 9 8-2 1). (5.13~)  

The implications of the results obtained in this section have been discussed 
in $ 1 above. 

6. Convex free-surface 
We now proceed to sketch the required changes in the foregoing analysis for 

convex free surfaces, corresponding to 1 < 0 in (1.1). Of special interest for 
geophysical problems is the spherical free surface 

xo(r) = -R+(R2-r2)) 

= - (r2/3R) [1+ O(r2/R2)] .  

(6.1 a) 

(6.1 b )  

Comparing (6.1 b )  and (1.1) and setting I = - R, we may approximate (6.1 a) 
by (1.1) for (r/R)2 < 1. 

We first observe that the formulation of $2, and also of $ 3  through (3.4), is 
valid as it stands for 1 < 0 or, indeed, for any axisymmetric free surface. The 
transformation of the boundary-value problem to parabolic co-ordinates, 
(3.5)-(3.9), may be rendered valid for 1 < 0 simply by choosing the 7-range [0,1], 
rather than [I, 001. The finiteness condition (3.9) then must be satisfied for 7 = 0,  
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rather than 7 -+ co; accordingly, we must replace KO by I,, the modified Bessel 
function of the first kind, in (3.10)-(3.12) and #J by (note that 1; = I,, whereas 

in (3.14) et seq. We emphasize that K < 0 for Z < 0 if h is real. We therefore are 
led to the solution of (3.17) with 

(6.3 a) 

(6.3 b)  

Remarking that q5$--), and hence also 2, is a single-valued function of s, we 
may proceed along the lines of the Appendix to prove that 2 is a meromorphic 
function of s with an infinite set of poles confined to the imaginary axis, say 
s = kiuo, kicr,, kia,, ..., where 

u, 5 2 0  as k 52w($g 1Z1)-* (6.5a) 

and 2w > u1 > rz > .... (6.5 b )  

It follows that: (a) the two waves of the first class go over to waves of the second 
class for k < 2w($g lZl)-&; ( b )  the waves of the second class form a discrete, in- 
finite spectrum with a limit point at  u = 0,t  in remarkable contrast to the 
continuous spectrum ( - 2w, 2 w )  that obtains for I > 0. 

We may suppress the essential differences between the frequency spectra for 
concave and convex free surfaces of small curvature simply by replacing 2 by its 
asymptotic approximation prior to the deformation of the path for the Laplace- 
transform inversion integral. We then have 

4(-)(4 = - Il(K)/IO(K) (6.2) 
K; = -K1) 

Z ( k ,  s )  = As[s'+ (gklh) #J(-)(hkE)]-l 

= A5[s2+ (g/h' 121) #J'i)(hkZ)]-', 

where & ) ( K )  = KI~(K)/I,(K). (6.4) 

independently of sgn 1. Substituting (6.6) into ( 3 . 1 7 ~ )  and then proceeding as in 
994 and 5, we obtain the results (4.43, (5 .5 ) )  and (5.13a). We remark that the 
approximations (4.5) and (5.13 a) are independent of sgnZ, as also are the terms 
in a8 in (5 .5) ,  whereas 8 changes sign with I in (5.5). The argument is heuristic, 
to be sure, since (6.6) is not uniformly valid near either k = 0 or h = 0. More 
rigorous derivations of (4.5)) (5 .5) )  and (5.13a) for Z < 0 may be constructed 
along the lines followed in $Q 4 and 5 but do not appear to be worth presenting 
here. Estimating the error A, as in (5.7)-(5.12), would appear to be more difficult, 
and the error terms given in (5.13 b, c) may not be valid for Z < 0. 

Appendix 
We wish to prove that there are two, and only two, poles of 2, qua function 

of s, that these poles lie on the imaginary axis-say s = k ir-and that u > 20. 
We begin by considering the denominator of Z(k , s ) ,  (3.15)) as a function of 

K = hkl. Solving (3.4) for s2, we obtain 

S2 = - 4W2[1 - (K/K1)']-l (K1 = kl). (A 1) 
t This would present no essential difficulty in effecting the inverse Laplace trans- 

formation, since the s-plane could be mapped on a (l/s)-plane. The result is a series 
converging like wS. 
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Substituting ( A l )  into the denominator of (3.15), we may place the result in 
the form 

where 

and $ ( K )  = 4K2/(K?-K2).  (A 4) 

The poles of 2 then correspond to the zeros of $ 1 ( ~ ) - $ ( ~ )  in I K I  > 0;  K = 0 
obviously is not a pole of 2. We remark that the imaginary part of $1 is given by 
- (2/77) IH&1)(i~)1-2 for imaginary values of K ,  in consequence of which $1- I,+ 
cannot have imaginary zeros. Similarly, $1- I,+ cannot have negative real zeros. 

We next establish that 2 can have poles only for 0 < K < K ~ .  Multiplying the 
differential equation 

through by zK,*(K*z), where Kg is the complex conjugate of KO, integrating by 
parts between z = 1 and z = co, dividing the result through by K,,K,*, and 
substituting $1 from (A 3), we obtain 

Equating the real and imaginary parts of (A4) and (A6), we infer that either 
K = 0 or K? - K Z  > 0. Having already established that $1 - $ cannot have either 
imaginary or negative real zeros and that K = 0 is trivial, we conclude that the 
non-trivial zeros of $1 - $ lie in 0 < K < K ~ .  

We now proceed to show that $ 1 ( ~ )  is a monotonically increasing function in 
K > 0 that intersects $ ( K )  once and only once. We first remark that, from (A3) 
and (A 5), $1 satisfies the Riccati equation 

$K; (K)  = $:-K.". (A 7) 

Starting from (A 3a) and the known integral of zKg(z), we also have 

It follows that $; (K)  > 0 for K > 0. Comparing (A 6) and (A 8) and noting, from 
the integral representation 

K1(tc) - K O ( ~ )  = exp { - K cosh t} (cosh t - 1) dt, (A91 Sum 
that K ,  > KO for K > 0, we find that 

and hence that $1(~ )  is concave downwards in K > 0. 
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Differentiating (A a), we find that @ ( K )  is monotonically increasing and con- 
cave upwards in (0, K ~ ) .  Finally, we remark that @ < r$l for sufficiently small, 
positive K (since @ and r$l tend to zero like and - l/log K ,  respectively), and 
that @ + co as K -+ K ~ .  It follows that r$l = @ once, and only once, in (0, K ~ ) .  

Referring to (Al )  and the choice of branch cut already discussed in $ 3 ,  we 
conclude that there are two, and only two, poles of Z ( k ,  s) and that these poles 
lie on the imaginary axis in the s-plane and exceed 2w in magnitude. 

Another consequence of (A 7) and (A 10) is 

K < r$l (K)  < (K2 f i)& -f 4 (K  > 0). (A 12) 

An interpolation between these bounds that agrees with the first two terms in 
the asymptotic expansion of r$l is given by 

$bl(K) = K +  4 ( K  > 0). (A 13) 

We have used (A 13) in the asymptotic approximations of§ 4, where it is justified 
directly by K 9 1, but it seems likely that it should be a good approximation 
for only moderately large values of K .  
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